Physics Analysis with the GCA Architecture

David Malon
Argonne National Laboratory
28 July 1998

STAR Collaboration Meeting
Brookhaven, NY

Argonne National Laboratory A

Aims

« To describe how one might connect physics codes to the
Grand Challenge machinery today

. To provide a foundation for collectively exploring how to
accomplish such integration in Mock Data Challenge | and
beyond

« To avoid detailed discussions in this forum of what the GCA
architecture does, and how it works

Argonne National Laboratory A

Physics Analysis with the GCA Architecture

If you can navigate the STAR persistent event data model:

1. Write a routine to do analysis on a single event; signature is
void usercode(d_Ref Anyé& current);
2. Link with a precompiled driver

3. Invoke the executable with an optional query string on the command
line

Argonne National Laboratory A

Example

1. Build:
CC -c Usercode.C
CC -0 myAnalysis Usercode.o ... (GCA libraries go here)
or
make myAnalysis
in the directory
/home/common/GC/malon/BuildYourOwnGCAQuery

2. Run:
myAnalysis -query “1970<num_Pion_p<1990”

This pumps events that satisfy the query one at a time through the user’s
usercode() routine.

The user does not need to know anything about the GCA architecture or
CORBA.

Argonne National Laboratory A

Sample User Code

#i ncl ude <t agdb. h>
#i ncl ude <i ostream h>

voi d usercode(d_Ref_Any& inRef) {

Il
/1
/1
Il

PHYSI CS GOES HERE.

This code is invoked for each event satisfying the client query.

Thi s exanpl e does | anbda counting ala David Zi mrerman in Doug O son’s
oParticles H JING event data nodel.

d_Ref<oParticles> current = inRef;

int dunbpart = current->_ptcl.size();
int num Lanbda = 0;
for (int i =0; i< dunbpart; i++) {
if(current-> ptcl[i].p.jdahep[0] ==){
if(current->_ptcl[i].p.idhep == 3122) {
num Lanbda++;

}
} /lend for

cout <<"\t"<<num Lanbda<<" out of "<<dunbpart;
cout <<" particles are | anbdas"<<endl ;

Argonne National Laboratory A

What if you don’t want to navigate the STAR event

data model directly?

Some possibilities:

« Vvoid usercode(d Ref Any& inRef){
realUsercode(makeSTAF_Event(inRef));

1

where makeSTAF _Event() is a library method to map a single
(Objectivity) persistent event into an appropriate STAF format

or
. wrap the iterator/driver code in STAF

Argonne National Laboratory A

Query Builders and Drivers

. Rudimentary query driver (show?)
— accepts and runs range queries

. Less rudimentary query builder/driver
— accepts queries in either RangeQL (GCA) or ObjectivityQL
— provides some query building support, error protection

— allows users to decide whether to execute a query based on query
estimates

— enables message-level control
— sample output (show?)

Argonne National Laboratory A

More Possibilities

No reason to require collocation of query building and physics
analysis

1. Write usercode() as above
2. Link with an even more elementary driver code
CC -0 RunWithlt Usercode.o RunWithit.o (...other libraries ...)
3. Run QueryBuilder
— looks like the driver code, but does NOT spawn an iterator
— good candidate for a GUI
— when you're ready to run, note the query token string
4. Pass the token to RunWithlt
RunWithlt <queryTokenString>

Argonne National Laboratory A

More Possibilities (continued)

In less secure environments (poor man’s parallelism):

rsh rinx01 RunWithlt <queryTokenString>
rsh rinx02 RunWithit <queryTokenString>
rsh rinx03 RunWithit <queryTokenString>

rsh rinx99 RunWithit <queryTokenString>
Iterators will be fed disjoint subsets of the qualifying events

Query progress can be monitored by QueryBuilder

Argonne National Laboratory A

RunWithlt Listing

#i ncl ude <gcaResources. h>
#i ncl ude <tagdbResources. h>
voi d usercode(d_Ref_Any& current);

int main (int argc, char **argv) {
GCA_Resour ces gcaResources(argc, argv);
TagdbResour ces t dbResources(argc, argv);
oolnit();
d_Transaction transaction;
transacti on. begi n();
t dbResour ces. openDBs(gcaResour ces. confi gur edVal ue(" FdbBoot ")) ;
if (argc < 2) {
cerr<<"You must provide a query token on the comrand |i ne."<<endl ;
exit(1);
}
SMQ QUERY_TOKEN T token = argv[1];

O derOptlterator OO (gcaResources. queryMnitor(), token,
gcaResour ces. nessagelLevel ());
while (OO .not_done()) {
usercode(*0A);
++00 ;
}
transaction.commit();
return O;

Argonne National Laboratory A

What comprises a query?

A selection predicate OR a collection of event references

native GCA query language (“RangeQL”) allows boolean
combinations of range selections on indexed attributes

(1800<num_Pion_p<2000) AND (2000>num_Pion_n)

current TagdbResources implementation also supports
ObjectivityQL queries (selection predicateson tag data
members)

_num_Pion_zero>0.585*(_num_Pion_p+ num_Pion_n)

the latter uses collections-as-queries support: builds an in-
memory collection from results returned by Objectivity
predicatescan

Argonne National Laboratory A

Alternative Ways to Use the Architecture Today

1. Supply a usercode() routine, link, and run
2. Copy the driver code, and adapt it for personal use

3. Instantiate and control GCA components directly (not a good
idea for production)

Argonne National Laboratory A

Design Characteristics

. User shielded from many ugly details

. GCA and CORBA are encapsulated in a GCA_Resources class
— encapsulates ORB and BOA references
— encapsulates QueryFactory
— handles configuration details, config files, and initialization
— establishes remote connections

— provides some utilities (message levels, access to GCA command line
parameters)

This piece should need to know little, if anything, about Objectivity.

Argonne National Laboratory A

Design Characteristics |l

. Tagdb and Objectivity details are encapsulated in a
TagdbResources class

— federation and tagdb handle management, opens and closes
— query builder utilities

— tag-content-specific stuff

— support for ObjectivityQL Tagdb scans

This piece should need to know little, if anything, about the GCA
architecture and CORBA.

« Currently the locus for Objectivity-to-CORBA utilities

. In amixed environment, coordination will be needed for
session control.

Argonne National Laboratory A

Saving query results

« What to save:
— OIDs of events that satisfy a selection predicate
— OIDs of events that survive a usercode() cut
— more than just OIDs?

« GCA has begun exploring rudimentary approaches to the first
two of these

— in Objectivity
— in external files
« support of third option would require more than GCA tools

« saving in Objectivity requires resolution of access control
issues

“Standard” GCA drivers open the federation in read-only mode.

Argonne National Laboratory A

